54 research outputs found

    Sequence based methods for the prediction and analysis of the structural topology of transmembrane beta barrel proteins

    Get PDF
    Transmembrane proteins play a major role in the normal functioning of the cell. Many transmembrane proteins act as a drug target and hence are of utmost importance to the pharmaceutical industry. In spite of the significance of transmembrane proteins, relatively few transmembrane 3D structures are available due to experimental bottlenecks. Due to this, it is imperative to develop novel computational methods to elucidate the structure and function of these proteins. The two major classes of transmembrane proteins are helical membrane proteins and transmembrane beta barrel proteins. Relatively more 3D structures of helical membrane proteins have been experimentally determined and in general, the majority of computational methods in the realm of transmembrane proteins deal with helical membrane proteins. However, in the recent years there has been an increased interest in the development of computational methods for the transmembrane beta barrel proteins. In this study, I focus on the transmembrane beta barrel proteins. More specifically, I present here computational methods for the prediction of the exposure status of the residues in the membrane spanning region of the transmembrane beta barrel proteins. To the best of our knowledge, the exposure status prediction is a novel problem in the realm of transmembrane beta barrel proteins. The knowledge about the exposure status of the membrane spanning residues is then used to analyse the structural properties of transmembrane beta strands. The exposure status information is also employed to identify relevant physico-chemical properties that are statistically significantly different in the transmembrane beta strands at the oligomeric interfaces and the rest of the protein surface. A method for the prediction of the beta strands in the membrane spanning regions of putative transmembrane beta barrel proteins from protein sequence has also been developed. The computational method for strand prediction is novel in the respect that it also gives the exposure status information of the residues predicted to be in the predicted transmembrane beta strands. The two computational methods developed in this study have been made available as web services. In the future, the information about the exposure status of the residues in the transmembrane beta strands can be used to identify putative transmembrane beta barrels from proteomic data. The exposure status prediction can also be extended to predict the pore region of transmembrane beta barrel proteins from sequence, which could in turn be used in the function prediction of putative transmembrane beta barrels.Die Klasse der Transmembranproteine übernimmt eine Reihe wesentlicher Funktionen innerhalb der Zelle. Daher eignen sich viele dieser Proteine als Ziele für medizinische Wirkstoffe und sind daher von außerordentlichem Interesse für die Pharmaindustrie. Trotz ihrer Wichtigkeit wurden bislang nur wenige drei-dimensionale Strukturen von Membranproteinen erfasst, denn deren experimentelle Bestimmung hat sich als ausgesprochen schwierig herausgestellt. Aus diesem Grund erweist sich die Entwicklung von in silico Methoden zur de novo Vorhersage von Struktur und Funktion dieser Proteine von als notwendige Strategie. Die beiden wesentlichen Klassen von Transmembranproteinen unterteilt man, basierend auf ihren charakteristischen Sekundärstrukturen, in alpha-helikale Proteine und beta-Barrels. Erstere machen den größeren Anteil an experimentell bestimmten Strukturen aus, und auch die meisten bislang vorgestellten in silico Methoden konzentrieren sich auf die Modellierung solch alpha-helikaler Strukturen. In den vergangenen Jahren stieg daher das Interesse an Methoden zur Modellierung von transmembranen beta-Barrels. Die vorliegende Disseration beschäftigt sich vorrangig mit dieser Klasse von Transmembranproteinen, insbesondere präsentieren wir ein Verfahren zur Vorhersage der Exposition ("Exposure\u27;) zur Lipidschicht einzelner Residuen innerhalb der Transmembranregion von beta-Barrels. Diese Vorhersage der Exposition stellt bislang ein neuartiges Problem im Feld der beta-Barrels dar. Die daraus gewonnenen Informationen wurden zur Analyse der strukturellen Eigenschaften von Transmembranketten verwendet. Darüber hinaus können die Exposure-Daten zur Identifikation bedeutender physikochemischer Eigenschaften verwendet werden. Unsere Untersuchungen ergaben, dass zwischen transmembranen beta-strands an Oligomer-Interfaces und dem Rest der Proteinoberfläche statistisch signifikante Unterschiede bezüglich dieser Eigenschaften auftreten. Darüber hinaus stellen wir ein Verfahren zur sequenzbasierten Vorhersage von Transmembran-Residuen mutmaßlicher beta-Barrels vor, welches in Kombination mit der Vorhersage des Exposure-Status in dieser Form neuartig ist. Die beiden in dieser Studie vorgestellten Methoden sind online als Webdienste verfügbar. Basierend auf den Exposure-Vorhersagen von beta-Faltblättern ist es möglich, in künftigen Studien mutmaßliche transmembrane beta-Barrels aus Proteomdatenzu identifizieren

    Prediction of the burial status of transmembrane residues of helical membrane proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Helical membrane proteins (HMPs) play a crucial role in diverse cellular processes, yet it still remains extremely difficult to determine their structures by experimental techniques. Given this situation, it is highly desirable to develop sequence-based computational methods for predicting structural characteristics of HMPs.</p> <p>Results</p> <p>We have developed TMX (TransMembrane eXposure), a novel method for predicting the burial status (i.e. buried in the protein structure vs. exposed to the membrane) of transmembrane (TM) residues of HMPs. TMX derives positional scores of TM residues based on their profiles and conservation indices. Then, a support vector classifier is used for predicting their burial status. Its prediction accuracy is 78.71% on a benchmark data set, representing considerable improvements over 68.67% and 71.06% of previously proposed methods. Importantly, unlike the previous methods, TMX automatically yields confidence scores for the predictions made. In addition, a feature selection incorporated in TMX reveals interesting insights into the structural organization of HMPs.</p> <p>Conclusion</p> <p>A novel computational method, TMX, has been developed for predicting the burial status of TM residues of HMPs. Its prediction accuracy is much higher than that of previously proposed methods. It will be useful in elucidating structural characteristics of HMPs as an inexpensive, auxiliary tool. A web server for TMX is established at http://service.bioinformatik.uni-saarland.de/tmx and freely available to academic users, along with the data set used.</p

    PconsFold: improved contact predictions improve protein models

    Get PDF
    Motivation: Recently it has been shown that the quality of protein contact prediction from evolutionary information can be improved significantly if direct and indirect information is separated. Given sufficiently large protein families, the contact predictions contain sufficient information to predict the structure of many protein families. However, since the first studies contact prediction methods have improved. Here, we ask how much the final models are improved if improved contact predictions are used. Results: In a small benchmark of 15 proteins, we show that the TM-scores of top-ranked models are improved by on average 33% using PconsFold compared with the original version of EVfold. In a larger benchmark, we find that the quality is improved with 15–30% when using PconsC in comparison with earlier contact prediction methods. Further, using Rosetta instead of CNS does not significantly improve global model accuracy, but the chemistry of models generated with Rosetta is improved. Availability: PconsFold is a fully automated pipeline for ab initio protein structure prediction based on evolutionary information. PconsFold is based on PconsC contact prediction and uses the Rosetta folding protocol. Due to its modularity, the contact prediction tool can be easily exchanged. The source code of PconsFold is available on GitHub at https://www.github.com/ElofssonLab/pcons-fold under the MIT license. PconsC is available from http://c.pcons.net/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    A Case of Engineering Quality for Mobile Healthcare Applications Using Augmented Personal Software Process Improvement

    Get PDF
    Mobile healthcare systems are currently considered as key research areas in the domain of software engineering. The adoption of modern technologies, for mobile healthcare systems, is a quick option for industry professionals. Software architecture is a key feature that contributes towards a software product, solution, or services. Software architecture helps in better communication, documentation of design decisions, risks identification, basis for reusability, scalability, scheduling, and reduced maintenance cost and lastly it helps to avoid software failures. Hence, in order to solve the abovementioned issues in mobile healthcare, the software architecture is integrated with personal software process. Personal software process has been applied successfully but it is unable to address the issues related to architectural design and evaluation capabilities. Hence, a new technique architecture augmented personal process is presented in order to enhance the quality of the mobile healthcare systems through the use of architectural design with integration of personal software process. The proposed process was validated by case studies. It was found that the proposed process helped in reducing the overall costs and effort. Moreover, an improved architectural design helped in development of high quality mobile healthcare system

    Dissecting CD8+ T cell pathology of severe SARS-CoV-2 infection by single-cell immunoprofiling

    Get PDF
    Introduction: SARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants. Methods: We combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19. Results: We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions. Discussion: We propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity.</p

    Sublethal necroptosis signaling promotes inflammation and liver cancer

    Full text link
    It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma

    Integrative Analysis Reveals a Molecular Stratification of Systemic Autoimmune Diseases

    Get PDF
    Objective Clinical heterogeneity, a hallmark of systemic autoimmune diseases, impedes early diagnosis and effective treatment, issues that may be addressed if patients could be classified into groups defined by molecular pattern. This study was undertaken to identify molecular clusters for reclassifying systemic autoimmune diseases independently of clinical diagnosis. Methods Unsupervised clustering of integrated whole blood transcriptome and methylome cross-sectional data on 955 patients with 7 systemic autoimmune diseases and 267 healthy controls was undertaken. In addition, an inception cohort was prospectively followed up for 6 or 14 months to validate the results and analyze whether or not cluster assignment changed over time. Results Four clusters were identified and validated. Three were pathologic, representing “inflammatory,” “lymphoid,” and “interferon” patterns. Each included all diagnoses and was defined by genetic, clinical, serologic, and cellular features. A fourth cluster with no specific molecular pattern was associated with low disease activity and included healthy controls. A longitudinal and independent inception cohort showed a relapse–remission pattern, where patients remained in their pathologic cluster, moving only to the healthy one, thus showing that the molecular clusters remained stable over time and that single pathogenic molecular signatures characterized each individual patient. Conclusion Patients with systemic autoimmune diseases can be jointly stratified into 3 stable disease clusters with specific molecular patterns differentiating different molecular disease mechanisms. These results have important implications for future clinical trials and the study of nonresponse to therapy, marking a paradigm shift in our view of systemic autoimmune diseases

    Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease

    Get PDF
    The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.We gratefully acknowledge funding that supported this research support from the Ryerson University Faculty of Science (CNA), as well as funding support in the form of a CIFAR Catalyst Grant (JPJ and CNA), an NSERC Alliance Grant (CNA) and the Ryerson COVID-19 SRC Response Fund award (CNA). BW is partly supported by CIFAR AI Chairs Program. This work was also supported by a Mitacs award (BW), the European Union’s Horizon 2020 research and innovation program under a Marie Sklodowska-Curie grant (ER), by the CIFAR Azrieli Global Scholar program (JPJ), by the Ontario Early Researcher Awards program (JPJ and CNA), and by the Canada Research Chairs program (JPJ). We also thank Dr. James Rini (University of Toronto) for the kind gift of the 9.8E12 antibody used to detect the 229E Spike protein, and Dr. Scott Gray-Owen (University of Toronto) for the kind gift of the NL63 human coronavirus.Peer reviewe
    • …
    corecore